Feature Level Fusion of Palmprint and Iris
نویسندگان
چکیده
In many real-life usages, single modal biometric systems repeatedly face significant restrictions due to noise in sensed data, spoof attacks, data quality, nonuniversality, and other factors. However, single traits alone may not be able to meet the increasing demand of high accuracy in today’s biometric system.Multibiometric systems is used to increase the performance that may not be possible using single biometrics. In this paper we propose a novel feature level fusion that combines the information to investigate whether the integration of palmprint and iris biometric can achieve performance that may not be possible using a single biometric technology. Proposed system extracts Gabor texture from the preprocessed palm print and iris images. The feature vectors attained from different methods are in different sizes and the features from equivalent image may be correlated. Therefore, we proposed wavelet-based fusion techniques. Finally the feature vector is matched with stored template using KNN classifier. The proposed approach is authenticated for their accuracy on PolyU palmprint database fused with IITK iris database of 125 users. The experimental results demonstrated that the proposed multimodal biometric system achieves a recognition accuracy of 99.2% and with false rejection rate (FRR) of = 1.6%.
منابع مشابه
Performance Assessment of Color Spaces in Multimodal Biometric Identification with Iris and Palmprint using Thepade‟s Sorted Ternary Block Truncation Coding
Biometrics refers to the automatic identification of an individual based on his/her physiological and behavioral traits. Multimodal person authentication system is more effective and more challenging. The fusion of multiple biometric traits helps to minimize the system error rate. Here Iris and Palmprint fusion at Matching Score level is performed. The feature extraction in spatial domain using...
متن کاملPerformance Evaluation of Multimodal Multifeature Authentication System Using KNN Classification
This research proposes a multimodal multifeature biometric system for human recognition using two traits, that is, palmprint and iris. The purpose of this research is to analyse integration of multimodal and multifeature biometric system using feature level fusion to achieve better performance. The main aim of the proposed system is to increase the recognition accuracy using feature level fusio...
متن کاملPalmprint identification using feature-level fusion
In this paper, we propose a feature-level fusion approach for improving the efficiency of palmprint identification. Multiple elliptical Gabor filters with different orientations are employed to extract the phase information on a palmprint image, which is then merged according to a fusion rule to produce a single feature called the Fusion Code. The similarity of two Fusion Codes is measured by t...
متن کاملFeature-Level Fusion for Effective Palmprint Authentication
A feature-level fusion approach is proposed for improving the efficiency of palmprint identification. Multiple Gabor filters are employed to extract the phase information on a palmprint image, which is then merged according to a fusion rule to produce a single feature called the Fusion Code. The similarity of two Fusion Codes is measured by their normalized hamming distance. A database containi...
متن کاملRobust Multimodal Biometric Authentication Integrating Iris, Face and Palmprint
Fusion of multiple biometric modalities for human authentication performance improvement has received considerable attention. This paper presents a robust multimodal biometric authentication scheme integrating iris, face and palmprint based on score level fusion. In order to overcome the limitation of the possible missing modalites, the multiple parallel support vector machines (SVMs) fusion st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012